Regular papers BNAIC/BeneLearn 2021

Implementation of a Distributed Minimum
Dominating Set Approximation Algorithm in a
Spiking Neural Network

Victoria Bosch*l[0000—0001—7454—8325], Arne Diehl*l[0000—0001—9702—1083]’
Daphne SmitS*l[0000_0002_3737_6672], Akke Toeter*l[0000_0002_9577_920X], and
Johan Kwisthout2[0000—0003—4383—7786]

1 School for Artificial Intelligence, Radboud University, Montessorilaan 3 6525 HR
Nijmegen, the Netherlands

2 Donders Center for Cognition, Radboud University, Montessorilaan 3 6525 HR
Nijmegen, the Netherlands
j-kwisthout@donders.ru.nl

Abstract. Neuromorphic computing is a promising new computational
paradigm that may provide energy-lean solutions to algorithmic chal-
lenges such as graph problems. In particular, the class of distributed al-
gorithms may benefit from translation to spiking neural networks. This
work presents such a translation of a distributed approximation algo-
rithm for the minimum dominating set problem, as described by Kuhn
and Wattenhofer (2005), to a spiking neural network. This translation
shows that neuromorphic architectures can be used to implement dis-
tributed algorithms. Subcomponents of this implementation, such as the
calculation of the minimum or maximum of two numbers and degree of
a node, can be reused as foundational building blocks for other (graph)
algorithms. This work illustrates how leveraging neural properties for the
translation of traditional algorithms relies on novel insights, thereby con-
tributing to a growing body of knowledge on neuromorphic applications
for scientific computing.

Keywords: Neuromorphic Computing, Spiking Neural Network, Dis-
tributed Computing, Minimum Dominating Set, Graph Algorithms

1 Introduction

Neuromorphic Computing is a relatively young field that concerns itself with
emulating the brain and bringing advantages that are inherent to its structure
into computational devices and programs. These advantages include parallel ar-
chitecture, co-location of memory and computation, and high energy efficiency
[14]. Moving away from the traditional von Neumann-architecture is an avenue
from which various areas of research and development could benefit. In partic-
ular, the use of neuromorphic architectures has prompted the development of
new methods and algorithms for scientific computing [16].

* equal contribution

528

Regular papers BNAIC/BeneLearn 2021

2 Bosch et al.

The basic architecture and computational model underlying neuromorphic
hardware [4,2] is the spiking neural network (SNN). SNNs offer a great poten-
tial in finding solutions to graph problems. The translation process of graph
algorithms to SNNs is relatively new, and there is still much knowledge to be
gained about the optimal conversion and optimisation. The structure of SNNs
(neurons and synapses) is similar to that of graphs (vertices and edges), allowing
any graph to be represented by a spiking neural network. Thus, one possible ap-
proach is to use the inherent structure of the graph to solve various problems by
letting the vertices communicate with spikes and spike timing (message-passing).
Recent work that takes this approach is the partial translation of an algorithm for
the max network flow problem to neuromorphic hardware [2], implementation of
a SAT solver [21], and an exploration of neuromorphic algorithms for the longest
shortest path and minimum spanning tree [9]. Another approach for the usage
of SNNs for graph problems is to view every neuron as a computational unit.
Manually programming and designing the network may be unconventional, yet
this approach enables increased control in tailoring of SNNs for various (graph)
problems. For example, Aimone et al. present a conversion method for the class
of dynamic programs [1].

However, there are more classes of algorithms that may benefit from neu-
romorphic architectures, especially the class of distributed algorithms. This is
because distributed computing traditionally requires multiple CPUs, whereas
the neurons in an SNN can function as a population of computational units
within one device.

(a) Dominating set (b) Minimum Dominating Set

Fig. 1: Examples of a dominating set and a minimum dominating set of a graph
(shown in purple).

To demonstrate the potential of programming SNNs for distributed graph
algorithms, we show a conversion of a distributed approximation algorithm for
the minimum dominating set (MDS) graph problem. Kuhn and Wattenhofer
[11] have constructed a distributed and constant-time approximation algorithm
for the MDS problem. The MDS of a graph is a smallest subset of the ver-
tices in G, such that for every vertex it either is in the dominating set, or one
of its direct neighbours is (see fig. 1). The Kuhn-Wattenhofer algorithm is a
parallelised greedy algorithm and achieves an expected approximation ratio of
O(kA®R/MogA) in O(k?) rounds where k is an arbitrary parameter that denotes
the number of iterations of the approximation algorithm and A is the maximum

529

Regular papers BNAIC/BeneLearn 2021

Spiking Minimum Dominating Set Approximation 3

degree in graph G. Because of its distributive nature and constant-time complex-
ity, we have found the algorithm fit to be effectively implemented in a spiking
neural network. Thus, we present a spiking neural network implementation of
the Kuhn-Wattenhofer approximation algorithm for the minimum dominating
set problem, in order to show the potential of programming SNNs.

2 Preliminaries

2.1 Graph Definitions

A graph G = (V, E) with edges (u,v) € E, consists of vertices V = (v1, ..., vp)
and edges E = (eq, ..., €m), where n and m represent the number of vertices and
edges in graph G respectively. The degree d; represents the number of connected
vertices for an arbitrary vertex v; with ¢ € [1,n]. Alternatively, (5§1) and 652)
denote the maximum degree in a one- and two-step neighbourhood of the vertex
v; respectively. A denotes the maximum degree in the graph G.

2.2 Minimum Dominating Set
The functional minimum dominating set problem is defined as follows:

Minimum Dominating Set

Input: Undirected graph G = (V, E).

Output: Subset D in which D C V if v € V is in D or adjacent to D,
and no subset of D is a dominating set of G.

The minimum dominating set problem has historical roots in the k-queens prob-
lem and is related to the set cover problem.The set cover problem can be con-
sidered equivalent to MDS under L-reduction [7]. The MDS problem is one of
the first graph problems shown to be NP-hard [5]. The best logarithmic approx-
imations of the MDS are achieved by hybrid algorithms that make use of greedy
algorithms and LP-rounding [13]. For a recent overview of the performance of
various approximation algorithms for the MDS problem, we refer to [13]. Poten-
tial applications for algorithms that solve the minimum dominating set problem
include the clustering of wireless devices in a network [8] and automatic text
summarisation [20].

2.3 Neural Model

Here we define a spiking neural network as a finite directed graph with vertices
and edges, where the vertices are neurons and the edges function as synapses.
We make use of the leaky-integrate-and-fire (LIF) neural model, which is com-
monly used in neuromorphic hardware. A LIF-neuron is defined by its initial
voltage (Vinit), the activation threshold (¢hr), the amplitude of the spike that
occurs when threshold is met (amp), the leakage constant (m) which decreases
the voltage over time, and the reset voltage to which the neuron returns after

530

Regular papers BNAIC/BeneLearn 2021

4 Bosch et al.

spiking (Vyeset). Neurons can either be deterministic or stochastic, which deter-
mines their spiking behaviour. A deterministic neuron spikes when its voltage
has reached its threshold. A stochastic neuron however, will spike according to
some probability distribution p. Neurons are connected by synapses, which are
defined by the pre- and post-synaptic neuron that they connect, the weight (w)
of their connection, and the time delay (d) of the signal. Spiking neural net-
works can take input from various sources, for example, the programmed V;,;;
of a neuron, or from neurons that are programmed to spike at a certain time.
The graphical notation for spiking neural networks in this paper is defined in
fig. 2 and is based on the notation presented in [2].

Programmed
neuron LIF-neuron
(fire once at t=1)

S0 0 — &0

Fig. 2: Notation for the graphical representation of spiking neural networks. If
the values are set to default values, they are omitted from the shown graph.

n
LiF=nieurons synapse Example of simple circuit

2.4 Kuhn-Wattenhofer algorithm

The Kuhn-Wattenhofer algorithm consists of two parts. It commences by solving
the LP-relaxation of the problem (in alg. 2), and then uses the solution, the a-
approximation (z(®)) of LPy/pg, to approximate the integer program (in alg. 1).
Using distributed randomised selection, a solution x ¢ for the integer program
(IPyps) is found, where 24 consists of a binary list indicating which vertices
are in the dominating set that approximates the minimum dominating set.

The approximation of LPyps (alg. 2) contains the main functionality of
the Kuhn-Wattenhofer algorithm, as it returns the approximation of the related
linear programming solution LPy;pg. It is a distributed greedy algorithm, where
each vertex v; dynamically calculates the a-approximation x; for the solution to
LPyps. To that end, each vertex also has a variable colour, which is initially
white and turned grey if the vertex is considered covered. Each vertex also has
a variable dynamic degree d(v;), which is equal to the number of vertices in
the closed neighbourhood (that includes the vertex itself) that are white. As
initially all vertices are white, the dynamic degree is initialised to the number of
vertices in its closed neighbourhood (J; +1). The algorithm contains two nested
loops. For every iteration, the vertices with a dynamic degree 6(v;) above the
threshold, raise x;. Next, the dynamic degree d(v;) is updated according to the

531

Regular papers BNAIC/BeneLearn 2021

Spiking Minimum Dominating Set Approximation 5

Algorithm 1: Kuhn-Wattenhofer - LPy;ps — I Pyps

input : feasible solution * for LPyps
output: IPyps-solution ¢ (dom. set)

2
1 calculate 51() // Each step is computed for all vertices v; € V simultaneously.
. 2
2 p; = min{l,x§ - ln(éf)+ 1)}

1 with probability p;
3 TpSs,i = .
0 otherwise

4 send xps,; to all neighbours

5 if xps; =0 for all j € N; then
6 ‘ TDS,i ‘= 1

7 end

neighbouring colour values, which are then updated according to the x values of
neighbouring vertices v;.

These two algorithms work under the assumption that all vertices have knowl-
edge of the maximum degree A. There is a third algorithm available in [11], which
describes an adaptation of the LPy;ps approximation in which this knowledge
is not assumed. However, for the scope of this research, only the first two algo-
rithms are implemented. For a more detailed explanation of the workings of the
Kuhn-Wattenhofer algorithm, proofs, and the third algorithm, we refer to the
original paper [11].

Algorithm 2: Kuhn-Wattenhofer - LPy;ps approximation

1 x; =0
2 0(v;) = 0; + 1
3 for l:=k-1to 0by-1 do
4 for m := k-1 to 0 by -1 do
5 if 0(v;) > (A+1)% then
6 ‘ x; = max{x;, W}
7 end
8 Send colour; to all neighbours
9 5(v;) =| {j € N; | colour; = "white’} |
10 Send z; to all neighbours
11 if Yien,xz; > 1 then
12 ‘ colour; = "gray’
13 end
14 end
15 end

532

Regular papers BNAIC/BeneLearn 2021

6 Bosch et al.
3 Spiking Implementation

In this section, we present the spiking implementation of the Kuhn-Wattenhofer
algorithm and the details of the various functions that enable the calculation.
The original algorithm can be viewed in section 2.4. The spiking implementation
consists of multiple spiking neural networks, that each handle specific calcula-
tions and implement different functionalities. Some of these functions are called
multiple times, such as the calculation of the degree of the neurons. Program-
ming the SNN is achieved by setting and defining the variables of the neurons,
such as their thresholds, delays and spiking amplitude, and the weights of the
synapses. The values are defined by e.g. information acquired from the input
graph structure, and several networks take the measured resulting voltage of
another network as input.

3.1 LP-relaxation

The spiking implementation of the LP-relaxation (alg. 1) consists of six spiking
networks. The first function, spiking_degree, calculates the degree of each neu-
ron. This is done by creating neurons for all vertices and bidirectional synapses
for all edges. All neurons spike once, and the resulting voltage of each neuron
then represents the degree of that neuron. Then, spiking maz_degree, calculates
the maximum value of each neurons neighbourhood. The constructed network
of this function can be seen in fig. 3b. It is implemented by creating an out
and in-neuron for each neuron, where for each edge, a synapse is created be-
tween the out-neuron and the in-neuron. The out-neurons spike once, with a
delay equal to their value. The in-neurons have a threshold equal to their degree
and no leakage, which ensures that they spike when the last spike has arrived.
The spike-timing of the out-neuron therefore represents the maximum value of
the neighbourhood. This is then converted to a voltage-representation using a
separate count neuron, which adds one to its voltage until the in-neuron fires.

Afterwards, spiking_multiplication, calculates an element-wise multiplica-
tion of two arrays. This is implemented using one synapse per element, where
the initial spike amplitude represents the first value and the synaptic weight
represents the second value. The voltage of the post-synaptic neurons then rep-
resents the result of the multiplication. Then, the spiking minimum network
calculates the element-wise minimum of an element in an array and 1. The
constructed network of this function can be seen in fig. 3a. The minimum is
calculated using the following function: ((1 > value) - value) + ((value > 1) - 1).
The neuron first handles the first condition (1 > wvalue) by receiving an input
spike of amplitude 1 and having a threshold equal to the provided value. The
neuron second handles the second condition (value > 1) by receiving an input
spike of amplitude equal to the value and having a threshold of 1. Both neurons
are connected to a final neuron minimum, with a synaptic weight equal to value
for the first neuron and 1 for the second. The voltage of this last neuron then
represents the minimum value.

533

Regular papers BNAIC/BeneLearn 2021

Spiking Minimum Dominating Set Approximation 7

' w = value
- O
/ / - /
(b) Spiking-maz_degree: Network for calcu-

(a) Spiking-min: Network for calculating lating the mazimum degree of a meurons
the minimum of 1 and the incoming value. neighbourhood.

mp = firs - first
/]
w = first >
7 _w = sec
/]

7 7

(¢c) Spiking-maz: Network for calculating the mazimum of two values.

Fig. 3: Various spiking neural networks used as modules in the spiking implemen-
tation of the Kuhn-Wattenhofer algorithm.

The fifth function, spiking_sampling, samples according to the given prob-
abilities. This is implemented by creating a stochastic neuron for every vertex,
which spikes with the given probabilities. The spike represents whether a neuron
is considered in the dominating set or not.

And lastly, the spiking_summation network checks for all neurons whether
one of their neighbours is in DS, and adds the neuron v; to DS if this is not
the case. This is accomplished by creating neurons for all vertices, and bidi-
rectional synapses for all edges. Each dominating set vertex is represented as a
programmed neuron that is constantly spiking. All other vertices are represented
as LIF-neurons with a threshold of 1 and a constant input voltage of 1, which
initiates them to spike constantly. The weight of the synapse is negative (-1)
if the presynaptic neuron is in the dominating set, and 0 otherwise. This way,
the LIF-neurons that have a neighbour in the dominating set will be inhibited,
while the programmed neurons always keep spiking. The spikes thus represent
whether a vertex is considered to be in the dominating set or not.

3.2 Approximating LPrps

The spiking implementation of the LPy/ps approximation (alg. 2) consists of
three different spiking networks, of which one is the network utilised in the LP-
relaxation to calculate the degree. The second is the spiking_update function,

534

Regular papers BNAIC/BeneLearn 2021

8 Bosch et al.

which is depicted in fig. 4 and consists of three main steps. The first step is the
updating of the z-values. The check_dd neuron checks if the first if-statement is
met, by setting its threshold to (A + 1)#/F) and setting the initial voltage to the
old dynamic degree (d(v;)) values. If this neuron spikes, the z-value is updated.
The calculation of the new z-value is done using the spiking-maz function,
which will be described below. The computed z-values are contained in the z
neurons and sent to the check color neuron. This neuron checks if the second
if-statement is met. If this neuron fires, a silencer neuron is activated, which
turns the color neuron grey by inhibiting it. The dynamic degree is updated by
adding the outputs of these color neurons. Because the dynamic degree needs
to be updated before the color neurons are updated, we read out the dynamic
degree after step 2 of the simulation. The x and color values are saved after
three more simulation steps. As indicated in the figure, all of these neurons are
created once for every vertex in the input graph.

Fig.4: Graphical representation of the update function in the approximation of
LPyps. The input values to this function are the previous values of x, color
and §(v;) (dynamic degree). These are used in the model as initial voltage V;,
amplitude and input current. The output consists of the voltage levels of the x,
color and §(v;) neurons, which are used in the LP-relazation.

The spiking_max network used in the update function calculates the maxi-
mum of two values. The network is depicted in fig. 3c. The maximum is calculated
using the following formula: ((a > b)-a)+((b > a)-b), and is thus implemented in
a similar manner as the spiking_minimum network. One addition is made to en-
sure a correct computation if both values are equal. In that case, the maximum
neuron spikes and is reset to 0. The equality neuron checks if the inputs are
equal and sets the mazimum neuron to the first value.

These functions contain some commonly used principles, such as the imple-
mentation of if-else statements using the threshold value of the neurons. For an
example, see the descriptions of the spiking_minimum and spiking_ maximum
functions.

However, there are a few functions that have not been converted to the
SNN, such as the calculation of the natural logarithm. An attempt was made to
perform this calculation with a Taylor approximation in an SNN, but this lead

535

Regular papers BNAIC/BeneLearn 2021

Spiking Minimum Dominating Set Approximation 9

to the need of more standard Python or package functions. Future work may
allow for a complete conversion.

3.3 Neuromorphic Implementation

The translation of the Kuhn-Wattenhofer algorithm has been implemented in
the SNN Simulator [19], which simulates a spiking neural network. Additionally,
the functions for the calculation of the degree of a neuron and the maximum
of two numbers have been implemented in the LAVA framework by Intel [6]. In
future work, these functions may be ran on the Intel Loihi neuromorphic chip.
Code and documentation can be found at [3].

4 Complexity Analysis

In this section we compare the complexity of our implementation with that of
the Kuhn-Wattenhofer algorithm.

Traditional computational complexity analysis observes time complexity in
terms of the number of operations that are performed and space complexity as
amount of utilised memory. As the Kuhn-Wattenhofer algorithm is a distributed
algorithm, our complexity analysis of their algorithm follows the measures as
defined by Kshemkalyani and Singhal [10]. According to this metric, time and
space complexity are computed both per vertex and system-wide. Additionally,
the message complexity is computed in terms of message size, number of mes-
sages and number of communication rounds.

Because of their novel structure, spiking neural networks require new mea-
sures of complexity for their neuromorphic computation [12]. For SNNs, the
time complexity can be measured as time to convergence, the space complexity
as network size, and energy complexity as the total number of spikes, according
to Kwisthout and Donselaar [12]. Because our unconventional implementation
makes use of voltage-based computation, a hybrid complexity analysis is per-
formed. The creation of the network is not performed by the network itself,
therefore we also separate the network generation from the simulation of the
network in this analysis.

4.1 Space Complexity

Space complexity is defined as the amount of memory that is needed for a com-
putation, apart from the input [17]. However, for spiking neural networks it is
defined as network size [12]. For this project, we report on both. As we also make
use of non-spiking functions, providing the standard space complexity may pro-
vide a more accurate picture. If implemented on neuromorphic hardware, the
separation between these two measurements may be more relevant, as a choice
can be made to make use of an oracle to compute certain functions at times.

536

Regular papers BNAIC/BeneLearn 2021

10 Bosch et al.

Space Complexity of the Spiking Neural Network The space complexity
analysis has indicated that O(n?) space is needed for the generation of the spik-
ing networks of both the LP-relaxation (alg. 1) and the LPyspg-approximation
(alg. 2). The complexity of the SNN implementation depends on the creation
of neurons (n) and synapses (n?). The execution of the SNNs does not take
up any space in addition to their creation, as the execution only changes volt-
age values within the network. Thus, execution has a space complexity of O(1).
The complete program, including SNN generation, execution, and any necessary
non-spiking function has a space complexity of O(n?) as well.

Space Complexity of the Kuhn-Wattenhofer Algorithm Per vertex, the
space complexity of both Kuhn-Wattenhofer algorithms is O(1), because each
vertex stores the dynamic degree (5(v;)), color and a-approximation (z;) which
requires 3 memory slots per vertex. resulting in a system-wide space complexity
of O(n). The space complexity of the messages is defined by the message size of
O(log(n)) and the amount of messages of O(n?).

4.2 Time Complexity

The time complexity of an algorithm is traditionally computed as the amount
of atomic computational steps needed in relation to the size of the input. In our
case, the input consists of a graph and the maximum degree of the graph. This
means that we will express the time complexity as a function of vertices in the
input graph.

Since we are building and running a discrete time spiking neural network,
we have only calculated the time complexity for the building of the network in
the way described above. For the execution of the discrete SNN, we assumed
that every time step has a constant time complexity, which is reasonable, if the
network is run on neuromorphic hardware. Therefore, the amount of steps the
networks have to run determine their time complexity. The time to convergence,
as suggested by Kwisthout and Donselaar [12], may be more appropriate for
decision problems than for the goals of this research.

Time Complexity of the Spiking Neural Network The time complexity of
generating the SNNs used in the L P-relaxation is O(n?). The main contributor
in this time complexity is the calculation of the §; and A, which both require
synapses between neurons (in both directions) for every edge in graph G. The
generation of the SNNs used in the L Py;pg-approximation has a time complexity
of O(k? - n?). The bottleneck in this generation is formed by the two for-loops
and the update function that they contain, in which the dynamic degree S(UZ)
is calculated, which requires bidirectional edges.

The execution of LP-relaxation has a time complexity of O(n), which is due
to the calculation of §) and §(®), which require A time steps. The upper bound
and worst case scenario of A, the maximum degree of all neurons, here is O(n).

537

Regular papers BNAIC/BeneLearn 2021

Spiking Minimum Dominating Set Approximation 11

Execution of the LPypg approximation has a time complexity of O(k?), due to
the two for-loops. The final time complexity of the execution is thus O(n + k?).

The complete program, including SNN generation, execution, and any nec-
essary non-spiking function, has a time complexity of O(k? - n?) due to the
construction of the SNNs.

Time complexity of the Kuhn-Wattenhofer algorithm Per vertex, the
time complexity of the LP-relaxation is O(n). Computation of 62 and zpg
are the main contributors to this complexity. Per vertex, the time complexity of
LPyrps approximation is O(k2-n), due to the two for-loops and the computation
of the dynamic degree within them. The time complexity of the messages is
defined by the number of communication rounds of O(k?). Note that Kuhn and
Wattenhofer only mention the message time complexity of O(k?) in their paper,
constituting to their claim of a constant-time algorithm. However, we argue that
because the system-wide time complexity is not constant in time, this claim is
invalid.

4.3 Energy Complexity

Energy complexity is an uncommon, widely debated and yet undefined com-
plexity measure for traditional computation paradigms. It can be analysed as a
weighted time complexity [15], but it can also be derived from the IO complexity
[18].

The advantages of neuromorphic computing are primarily reflected by the rel-
atively low energy consumption in comparison with von Neumann architectures.
This has motivated the introduction of energy as a new complexity measure,
next to time and space complexity [12]. Whereas the energy complexity of a
traditional system is usually directly related to its time and space complexity,
this is not per se the case for neuromorphic systems. Depending on the type of
encoding (voltage, rate or temporal), the spiking behaviour of an SNN allows
for sparser information representation. Assuming a binary encoding, the time
between two spikes can be interpreted as a number, which only requires energy
when the neurons fire. This means that the size of the number (voltage) does
not impact the energy complexity of the representation in such an SNN.

The energy complexity in spiking neural networks is measured by the number
of spikes, which assumes that they are discrete events of the same value, indepen-
dent of actual spike amplitude [12]. Under the assumption that spikes are discrete
singular events that can happen once per time step, energy < time - space. Be-
cause we do not use a fully spike-based algorithm, but also inspect voltages at
times to output and programmed neurons, the assumption that every spike has
an energy complexity of O(1), does not hold. Therefore, we analyse energy both
in terms of discrete spikes, and the synaptic currents to give a more exact pic-
ture of the energy usage. Both measures of energy are experimentally measured,
while the synaptic current is also theoretically computed in terms of the size of
the input.

538

Regular papers BNAIC/BeneLearn 2021

12 Bosch et al.

Energy Complexity of the Spiking Neural Network The creation of the
SNNs costs energy, given that the SNN consists of neurons with a non-zero initial
voltage. This initialisation energy has a complexity of O(k? - n?). The biggest
contributor here is the creation of the network of the update function, wherein
n neurons are created that check the §(v;), with initial voltage bound by n. The
dependency on k is achieved since the update function initialises a network and
is called k? times.

The execution of the SNNs has an energy complexity of O(k? - n?). This
is based on the notion that in a fully connected graph, spikes can travel from
all neurons to all other neurons, resulting in an energy complexity of O(n?).
As the LPy;pgs-approximation performs the update function inside two nested
for-loops, the complexity of this algorithm is increased by a factor O(k?).

The energy complexity in terms of spikes in the networks is dependent on
O(k% - n + n?). This stems from the fact that we have n spiking neurons in
the LPy;ps-approximation, but also n spiking neurons in the function in which
Delta is calculated, with time complexity O(n).

For the non-spiking functions, we use their time complexity as an approxima-
tion method for their energy complexity, where we assume that at each time-step
only one computation takes place and all computations cost equal amounts of
energy. Under that assumption, the complexity of the complete program, includ-
ing SNN generation, execution and any necessary non-spiking functions, remains

O(k? - n?).

Energy Complexity of the Kuhn-Wattenhofer Algorithm The energy
analysis for the energy used by the Kuhn-Wattenhofer algorithms, for which
we again assume that time complexity is a bound for the energy consump-
tion, yields O(n) and O(k? - n) respectively for L P-relaxation and the LPypg-
approximation. For the energy complexity of the messages, we have used the
same assumption, yielding a complexity of O(k?).

5 Discussion

We have shown that the distributed algorithm for finding an approximation
of the minimum dominating set as presented by Kuhn and Wattenhofer [11]
can be successfully implemented in a programmed spiking neural network. This
work serves as an example for the porting of distributed algorithms to spiking
neural networks and provides subnetworks that can be modularly used in other
algorithms.

Complexity analysis shows that the SNN implementation fares worse in terms
of time and energy complexity. However, regarding space complexity, the SNN
implementation compares favourably to Kuhn and Wattenhofer. The time and
energy costs of the initialisation of the spiking neural networks is largely re-
sponsible for these seemingly contradicting findings. It is to be noted that Kuhn
and Wattenhofer do not take the initialisation of the message-passing system
into account. Including the complexity induced by the initialisation in the time

539

Regular papers BNAIC/BeneLearn 2021

Spiking Minimum Dominating Set Approximation 13

complexity of Kuhn and Wattenhofer, results in a complexity of O(k? - n + n?).
The theoretical time complexity of the algorithm is thus lower compared to the
time complexity of the SNN implementation of O(k? - n?).

Making use of the inherent distributiveness of neural networks may contribute
to the field of distributed computing, as the network can be seen as a population
of computational units within one device. Neuromorphic architectures may in
the future be used in distributed computing applications such as wireless (sensor)
networks.

Future research may look into reducing the complexity further to render the
time-, space- and energy complexities of the presented SNN implementation on
par with the Kuhn-Wattenhofer algorithm. This may be achieved by making full
use of the inherent properties of neuromorphic architectures. Another avenue is
to efficiently integrate all subnetworks (functions) into one connected network.
While the modularity of our implementation is advantageous in that its modules
can easily be reused in various kinds of graphs algorithms, particular problems
may benefit from one well-tailored network that is not divisible into modules.
Lastly, the spiking neural network may be run on neuromorphic hardware

6 Conclusion

This work presents a novel neuromorphic implementation of the distributed min-
imum dominating set approximation algorithm by Kuhn and Wattenhofer. By
programming the network and utilising voltage-based computation within neu-
rons, the LP-relaxation and L P pg-approximation algorithms as presented by
Kuhn and Wattenhofer have been successfully reproduced. The spiking neu-
ral networks are simulated in the SNN Simulator [19]. Several spiking neural
networks that have been developed in the translation process can function as
building blocks for spiking neural network implementations of other (graph) al-
gorithms.

Measuring the time, space and energy complexity of the spiking implemen-
tation, we find that it is comparable to the original algorithm. However, the
initialisation of the network takes up significant time and energy. As the com-
plexity of the original Kuhn-Wattenhofer algorithm does not take the initialisa-
tion of the message-passing structure into account, we conclude that the spiking
implementation does not fare significantly worse.

In conclusion, this work demonstrates that programming a spiking neural
network is an avenue worth pursuing for scientific computing applications. Fur-
thermore, it shows how leveraging neural properties in the domain of designing
spiking implementations of graph problems, prospers on novel insights. There-
fore, our work contributes to the scientific body of knowledge of neuromorphic
implementations in the field of distributed computing.

References

1. Aimone, J.B., Parekh, O., Phillips, C.A., Pinar, A., Severa, W.; Xu, H.: Dynamic
programming with spiking neural computing. In: Proceedings of the International

540

Regular papers BNAIC/BeneLearn 2021

14 Bosch et al.

Conference on Neuromorphic Systems. pp. 1-9 (2019)

2. Ali, A., Kwisthout, J.: A spiking neural algorithm for the network flow problem
(2019)

3. Bosch, V., Diehl, A., Smits, D., Toeter, A.: SNN implementation of dom-
inating set approximation. https://github.com/a-t-0/spiking-neural-network-of-
dominating-set-approximation (2021). https://doi.org/10.5281/zenodo.5496091

4. Davies, M., Wild, A., Orchard, G., Sandamirskaya, Y., Guerra, G.A.F., Joshi,
P., Plank, P., Risbud, S.R.: Advancing neuromorphic computing with loihi: A
survey of results and outlook. Proceedings of the IEEE 109(5), 911-934 (2021).
https://doi.org/10.1109/JPROC.2021.3067593

5. Garey, M.R., Johnson, D.S.: Computers and intractability, vol. 174. freeman San
Francisco (1979)

6. Intel: Lava: A software framework for neuromorphic computing.
https://github.com/lava-nc, https://github.com/lava-nc

7. Kann, V.: On the approximability of NP-complete optimization problems. Ph.D.
thesis, Citeseer (1992)

8. Karbasi, A.H., Atani, R.E.: Application of dominating sets in wireless sensor net-
works. Int. J. Secur. Its Appl 7, 185-202 (2013)

9. Kay, B., Date, P., Schuman, C.: Neuromorphic graph algorithms: Extracting
longest shortest paths and minimum spanning trees. In: Proceedings of the Neuro-
Inspired Computational Elements Workshop. NICE ’20, Association for Computing
Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3381755.3381762,
https://doi.org/10.1145/3381755.3381762

10. Kshemkalyani, A.D., Singhal, M.: Distributed computing: principles, algorithms,
and systems. Cambridge University Press (2011)

11. Kuhn, F., Wattenhofer, R.: Constant-time distributed dominating set approxima-
tion. Distributed Computing 17(4), 303-310 (2005)

12. Kwisthout, J., Donselaar, N.: On the computational power and complex-
ity of spiking neural networks. In: Proceedings of the Neuro-Inspired Com-
putational Elements Workshop. NICE ’20, Association for Computing Ma-
chinery, New York, NY, USA (2020). https://doi.org/10.1145/3381755.3381760,
https://doi.org/10.1145/3381755.3381760

13. Li, J., Potru, R., Shahrokhi, F.: A performance study of some approximation algo-
rithms for computing a small dominating set in a graph. Algorithms 13(12), 339
(2020)

14. Marti, D., Rigotti, M., Seok, M., Fusi, S.: Energy-efficient neuro-
morphic classifiers. Neural Computation 28(10), 2011-2044 (10 2016).
https://doi.org/10.1162/neco_a_00882, https://doi.org/10.1162/NECO_a_00882,
doi: 10.1162/NECO_a_00832

15. Roy, S., Rudra, A., Verma, A.: An energy complexity model for algorithms.
In: Proceedings of the 4th Conference on Innovations in Theoretical Com-
puter Science. p. 283-304. ITCS ’13, Association for Computing Machin-
ery, New York, NY, USA (2013). https://doi.org/10.1145/2422436.2422470,
https://doi.org/10.1145/2422436.2422470

16. Severa, W., Parekh, O., Carlson, K.D., James, C.D., Aimone, J.B.: Spiking network
algorithms for scientific computing. In: 2016 IEEE international conference on
rebooting computing (ICRC). pp. 1-8. IEEE (2016)

17. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning (01
2012), https://books.google.nl/books?id=1aMKAAAAQBAJ

541

Regular papers BNAIC/BeneLearn 2021

18.

19.

20.

21.

Spiking Minimum Dominating Set Approximation 15

Tran, V.N., Ha, P.H.: Ice: A general and validated energy complexity model
for multithreaded algorithms. In: 2016 IEEE 22nd International Confer-
ence on Parallel and Distributed Systems (ICPADS). pp. 1041-1048 (2016).
https://doi.org/10.1109/icpads.2016.0138

University, R.: Radboud SNN simulator. https://gitlab.socsci.ru.nl/snnsimulator /simsnn,
https://gitlab.socsci.ru.nl/snnsimulator /simsnn

Xu, Y.Z., Zhou, H.J.: Generalized minimum dominating set and application in
automatic text summarization. In: Journal of Physics: Conference Series. vol. 699,
p. 012014. IOP Publishing (2016)

Yakopcic, C., Rahman, N., Atahary, T., Taha, T.M., Douglass, S.: Solving con-
straint satisfaction problems using the loihi spiking neuromorphic processor. In:
2020 Design, Automation & Test in Europe Conference & Exhibition (DATE). pp.
1079-1084 (2020). https://doi.org/10.23919/DATE48585.2020.9116227

542

	Regular papers
	Benjamin Kap, Marharyta Aleksandrova and Thomas Engel: The Effect of Noise Level on Causal Identification with Additive Noise Models
	Tycho Atsma, Koen van der Zwet and Tom M. van Engers: The effect of group roles on the development of online vaccination Twitter communities
	Johannes Scholtes, Giorgia Nidia Carranza Tejada and Gerasimos Spanakis: An analysis of BERT negation handling in sentiment analysis
	Gaoyuan Liu, Joris De Winter, Bram Vanderborght, Ann Nowé and Denis Steckelmacher: MoveRL: To A Safer Robotic Reinforcement Learning Environment
	Emmanuel Kieffer, Frédéric Pinel, Thomas Meyer, Georges Gloukoviezoff, Hakan Lucius and Pascal Bouvry: Proximal Policy Optimisation for a Private Equity Recommitment System
	Ramon Petri, Eugenio Bargiacchi, Huib Aldewereld and Diederik M. Roijers: Heuristic Coordination in Cooperative Multi-Agent Reinforcement Learning
	Pieter Floris Jacobs, Gideon Maillette de Buy Wenniger, Marco Wiering and Lambert Schomaker: Active learning for reducing labeling effort in text classification tasks
	Abdolrahman Khoshrou and Eric J. Pauwels: Matrix Completion using Regularised Matrix Factorisation
	Martijn Oldenhof, Adam Arany, Yves Moreau and Jaak Simm: Self-Labeling of Fully Mediating Representations by Graph Alignment
	Xander Vankwikelberge, Bo Kang, Edith Heiter and Jefrey Lijffijt: ExClus: Explainable Clustering on Low-dimensional Data Representations
	Aras Yurtman, Wannes Meert and Hendrik Blockeel: COBRAS+: Reusing Previously Obtained Constraints in Active Semi-Supervised Clustering
	Nina Hosseini Kivanani, Roberto Gretter, Marco Matassoni and Giuseppe Daniele Falavigna: Experiments of ASR-based mispronunciation detection for children and adult English learners
	Bram De Cooman, Johan Suykens and Andreas Ortseifen: Improving temporal smoothness of deterministic reinforcement learning policies with continuous actions
	Jonas Bei, David Pomerenke, Lukas Schreiner, Sepideh Sharbaf, Pieter Collins and Nico Roos: Explainable AI through the Learning of Arguments
	Paweł Maka, Jelle Jansen, Theodor Antoniou, Thomas Bahne, Kevin Müller, Can Türktas, Nico Roos and Kurt Driessens: Combining Mental Models with Neural Networks
	Bart Bogaerts, Maxime Jakubowski and Jan Van den Bussche: SHACL: A Description Logic in Disguise
	André Mertens and Stylianos Asteriadis: Explainable and Interpretable Features of Emotion in Human Body Expressions
	Mariia Pliusnova and Alexia Briassouli: Deep Learning Techniques for Detection and Diagnosis of Brain Metastases
	Maxime De Bruyn, Ehsan Lotfi, Buhmann Jeska and Walter Daelemans: ConveRT for FAQ Answering
	Nele Albers, Miguel Suau and Frans A. Oliehoek: Using Bisimulation Metrics to Analyze and Evaluate Latent State Representations
	Elizaveta Nekrasova, Tibor Neugebauer, Te Bao and Yohanes Eko Riyanto: Algorithmic Trading in Experimental Markets with Human Traders: A Literature Survey
	Simon Vandevelde and Joost Vennekens: ProbLife: a Probabilistic Game of Life
	Miroslav Kárný and Daniel Karlík: Trust Estimation in Forecasting-Based Knowledge Fusion
	Vinu Ellampallil Venugopal and Sreenivasa Kumar P: Verbalizing but not just Verbatim Translations of Ontology Axioms
	Simona Capponi, Andrew I. Cooper, John Fearnley and Vladimir Gusev: Simple and Fast Methods for Integrating Predicted Data into Bayesian Optimization
	Yu Liuwen, Mirko Zichichi, Réka Markovich and Amro Najjar: Argumentation in Trust Services within a Blockchain Environment
	Rachele Carli: Social robotics and deception: beyond the ethical approach
	Zhao Yang, Mike Preuss and Aske Plaat: Transfer Learning and Curriculum Learning in Sokoban
	Zhao Yang, Mike Preuss and Aske Plaat: Potential-based Reward Shaping in Sokoban
	Timo Kats, Peter van der Putten and Jasper Schelling: Distinguishing Commercial from Editorial Content in News
	Jianing Wang, Matthias Müller-Brockhausen and Aske Plaat: Accelerating Multi-Agent Learning via Centralized Counting and Efficient Hashing
	Nicky Lenaers and Martijn Van Otterlo: Regular Decision Processes for Grid Worlds
	Victoria Bosch, Arne Diehl, Daphne Smits, Akke Toeter and Johan Kwisthout: Implementation of a Distributed Minimum Dominating Set Approximation Algorithm in a Spiking Neural Network
	François Robinet and Raphaël Frank: Refining Weakly-Supervised Free Space Estimation through Data Augmentation and Recursive Training
	Mattias Billast, Tom De Schepper, Kevin Mets, Peter Hellinckx, José Oramas and Steven Latré: Object detection with semi-supervised adversarial domain adaptation for real-time edge devices
	Akash Singh, Kevin Mets, Tom De Schepper, Peter Hellinckx, José Oramas and Steven Latré: Task Independent Capsule-based Agents for Deep Q-Learning
	Augustijn de Boer, Ron Hommelsheim and David Leeftink: A Bayesian Framework for Evaluating Evolutionary Art
	Ouren Kuiper, Martin van den Berg, Joost van der Burgt and Stefan Leijnen: Exploring Explainable AI in the Financial Sector: Perspectives of Banks and Supervisory Authorities
	Niels Rouws, Svitlana Vakulenko and Sophia Katrenko: Dutch SQuAD and Ensemble Learning for Question Answering from Labour Agreements

	Encore abstracts
	Sudhanshu Chouhan, Anna Wilbik and Remco Dijkman: A Real-Time Method to Detect Temporal Anomalies in Event Log Data
	Oliver Urs Lenz, Daniel Peralta and Chris Cornelis: Average Localised Proximity: A new data descriptor with good default one-class classification performance
	Marjolein Deryck, Nuno Comenda, Bart Coppens and Joost Vennekens: Combining Logic and Natural LanguageProcessing to Support Investment Management
	Anna Wilbik and Paul Grefen: Towards a Federated Fuzzy Learning System
	Pieter Delobelle, Thomas Winters and Bettina Berendt: RobBERT: a Dutch RoBERTa-based Language Model
	Gonzalo Nápoles, Agnieszka Jastrzebska and Yamisleydi Salgueiro: A Note on Pattern Classification with Evolving Long-term Cognitive Networks
	Azqa Nadeem, Sicco Verwer, Stephen Moskal and Shanchieh Jay Yang: SAGE: Intrusion Alert-driven Attack Graph Extractor
	Hans van Ditmarsch, Malvin Gattinger and Rahim Ramezanian: Everyone knows that everyone knows (abstract)
	Felipe Kenji Nakano, Konstantinos Pliakos and Celine Vens: Deep tree-ensembles for multi-output prediction
	Leandra Fichtel, Jan-Christoph Kalo and Wolf-Tilo Balke: Prompt Tuning or Fine-Tuning -Investigating Relational Knowledge in Pre-Trained Language Models
	Yihe Dong, Jean-Baptiste Cordonnier and Andreas Loukas: Attention is not all you need: pure attention loses rank doubly exponentially with depth
	Isel Grau, Ann Nowé and Wim Vranken: Encore Abstract: Interpreting a Black-Box Predictor to Gain Insights into Early Folding Mechanisms
	Kylian Van Dessel, Jo Devriendt and Joost Vennekens: FOLASP: FO(.) as Input Language for Answer Set Solvers
	Victor Contreras, Reyhan Aydogan, Amro Najjar and Davide Calvaresi: On Explainable Negotiations via Argumentation
	Luisa Ebner, Malte Nalenz, Annette ten Teije, Frank van Harmelen and Thomas Augustin: Expert RuleFit: Complementing Rule Ensembles with Expert Knowledge
	Anna Lukina, Christian Schilling and Thomas Henzinger: Active Monitoring of Neural Networks
	V. Javier Traver, Judith Zorío and Luis A. Leiva: A Gaze-Based Measure of Temporal Salience
	Reza Refaei Afshar, Jason Rhuggenaath, Yingqian Zhang and Uzay Kaymak: Optimizing Reserve Price using Deep Reinforcement Learning and Shaped Reward
	Yazan Mualla, Igor Tchappi, Timotheus Kampik, Amro Najjar, Davide Calvaresi, Abdeljalil Abbas-Turki, Stéphane Galland and Christophe Nicolle: A Human-Agent Architecture for Explanation Formulation (An extended abstract)
	Johan Kwisthout: Explainable AI using MAP-independence
	Eugenio Bargiacchi, Timothy Verstraeten and Diederik M. Roijers: Scalable Multi-Agent Reinforcement Learning with Cooperative Prioritized Sweeping
	Daniël Vos and Sicco Verwer: Efficient Training of Robust Decision Trees Against Adversarial Examples
	Zahra Atashgahi, Ghada Sokar, Tim van der Lee, Elena Mocanu, Decebal Constantin Mocanu, Ramond Veldhuis and Mykola Pechenizkiy: Quick and Robust Feature Selection: the Strength of Energy-efficient Sparse Training for Autoencoders (Extended Abstract)
	Davide Ceolin, Giuseppe Primiero, Jan Wielemaker and Michael Soprano: Assessing the Quality of Online Reviews using Formal Argumentation Theory
	Neil Yorke-Smith: Agent-Based Simulation of Short-Term Peer-to-Peer Rentals: Evidence from the Amsterdam Housing Market
	Paulo Roberto de Oliveira da Costa, Yingqian Zhang, Alp Akcay and Uzay Kaymak: Learning 2-opt Local Search from Demonstrations
	Ghada Sokar, Decebal Constantin Mocanu and Mykola Pechenizkiy: SpaceNet: Make Free Space For Continual Learning (Extended Abstract)
	Oliver Roesler and Elahe Bagheri: Unsupervised Online Grounding for Social Robots (Extended Abstract)

	Posters and demonstrations
	Hélène Plisnier, Alessandro Fasano and Ann Nowé: Play the Reinforcement Learning Agent
	Mani Tajaddini, Willem-Paul Brinkman, Annette ten Teije and Mark Neerincx: A Design Pattern Language for Hybrid Intelligent Teams
	Hélène Plisnier, Denis Steckelmacher and Ann Nowé: Shepherd: Reinforcement Learning as a Service with Distributed Execution
	Nele Albers, Mark A. Neerincx and Willem-Paul Brinkman: Reinforcement Learning-Based Persuasion by a Conversational Agent for Behavior Change
	Kristina Kudryavtseva and Sviatlana Hoehn: SafeTraveller - A conversational assistant for BeNeLux travellers
	Marjolein Deryck, Nuno Comenda, Bart Coppens and Joost Vennekens: Logical Reasoning application with NLP interface to construct the Knowledge Base
	Imen Chakroun, Tom Vander Aa, Roel Wuyts and Wilfried Verarcht: Using privacy preserving amalgamated machine learning for pedestrian safety in warehouses
	Dimitra Anastasiou, Anders Ruge, Hoorieh Afkari, Patrick Gratz, Radu Ion, Verginica Barbu Mititelu, Olivier Pedretti, Svetlana Segarceanu and George Suciu: A Machine Translation powered AI Chatbot
	Isel Grau, Luis Daniel Hernandez, Astrid Sierens, Simeon Michel, Nico Sergeyssels, Vicky Froyen, Catherine Middag and Ann Nowé: Talking to your Data: Interactive and interpretable data mining through a conversational agent
	Roelant Ossewaarde, Stefan Leijnen and Thijs Van den Berg: An invariants based architecture for combining small and large data sets in neural networks

	Thesis abstracts
	Wafaa Aljbawi: Automated Diagnostic System of Skin Cancer using Deep Convolutional Neural Networks on Dermoscopic Images
	Sven van Asseldonk and Itir Onal Ertugrul: Deepfake Video Detection using Deep Convolutional and Hand-Crafted Facial Features with Long Short-Term Memory Network
	Chris Slewe, Maaike de Boer and Tejaswini Deoskar: Generating common-sense scene graphs using a knowledge base BERT model
	Martin Toman and Neil Yorke-Smith: Localised Reputation in the Prisoner's Dilemma
	Abigail Vella, Frankie Inguanez and Daren Scerri: Remote NO2 emissions assessment during COVID-19 lockdowns
	Adel Magra, Peter Spreij, Tim Baarslag and Michael Kaisers: Automated Negotiation Under User Preference Uncertainty
	Astrid Sierens, Isel Grau, Luis Daniel Hernandez, Simeon Michel, Vicky Froyen, Catherine Middag and Ann Nowé: Thesis Abstract: Interactive Subgroup Discovery for the conversational data governance platform "Talking to your Data"
	Aleksandra Olczyk and Itir Onal Ertugrul: Pain recognition from thermal videos using deep neural networks
	Domien Hennion, Timothy Verstraeten and Ann Nowé: Safe Fleet-Wide Policy Iteration
	Lisa Koutsoviti Koumeri and Gonzalo Nápoles: Bias quantification measures based on fuzzy rough sets
	Gregory Wullaert, Fabian Sanjines, Timothy Verstraeten and Ann Nowé: Learning Deep Coordination Graphs for Multi-Agent Systems
	Julian Posch, Kurt Driessens and Jacques Verriet: Encoder-Decoder Approaches for Detection and Diagnosis of Anomalies in Machine Control Applications
	Anna-Maria Angelova, Fernando P. Santos and Sandro Bjelogrlic: Enhancing Reject Inference in Credit Scoring with Selective Semi-Supervised Learning
	Floris Doolaard and Neil Yorke-Smith: Online Learning of Deeper Variable Ordering Heuristics for Constraint Optimisation Problems
	Yazan Mualla, Stéphane Galland and Christophe Nicolle: Explaining the Behavior of Remote Robots to Humans (Extended abstract)
	Pietro Piccini: Identifying strong predictors of engagement in Facebook news posts
	Songha Ban and Lee-Ling Sharon Ong: Producing "Open-Style" Choreography for K-Pop Music with Deep Learning
	Valerie S. Sawirja and Peter Bloem: Fine-Tuning Pretrained Language Models for Controlled Text Generation with Adapters
	Thomas Vaeyens, Youri Coppens, Timothy Verstraeten and Ann Nowé: Explainable Reinforcement Learning for Fleet Applications
	Matthias Cami, Inês Terrucha, Yara Khaluf and Pieter Simoens: Bayesian Inverse Reinforcement Learning for strategy extraction in the iterated Prisoner's Dilemma game
	Michela Venturini and Giulia Barbati: Clinical Predictive Models: A comparison between Machine Learning and Classical Techniques

	Author index

